
Asymptotic Solution for Nonlinear Buckling of Orthotropic
Shells on Elastic Foundation

G. H. Nie∗

Tongji University, 200092 Shanghai, People’s Republic of China

C. K. Chan†

HongKongPolytechnicUniversity, HungHom,Kowloon,HongKong, People’s Republic of China

J. C. Yao‡

Tongji University, 200092 Shanghai, People’s Republic of China

and

X. Q. He§

City University of Hong Kong, Kowloon Tong, Hong Kong, People’s Republic of China

DOI: 10.2514/1.43311

An asymptotic solution for nonlinear buckling of elastically restrained imperfect, orthotropic, shallow spherical

shells on an elastic foundation is derived in this paper. An analytic and explicit relation between external pressure

and central deflection of the shell is presented in nondimensional form using the asymptotic iteration method. The

solution incorporates the effects of orthotropic andmaterial parameters, geometric imperfection, Young’s and shear

moduli of foundation, and edge-restraint coefficients. An extensive parametric study is carried out for deformation

and buckling of such structures. Comparisons with available data for some specific cases show that the resulting

solution is accurate in computation. It also indicates that the present solution can be readily used to evaluate

nonlinear deformation and buckling behavior of orthotropic, imperfect, shallow spherical shells.

Nomenclature

D� E�h
3

12����2
�
� = flexural rigidity

Er, �r = elastic modulus and Poisson’s ratio in the radial
direction

E�, �� = elastic modulus and Poisson’s ratio in the
circumferential direction

G = nondimensional shear modulus of foundation
g = shear modulus of foundation
H = apex height of the shell
h = thickness of the shell
Kb, Ki = nondimensional rotational and in-plane

edge-restraint coefficients
K1, K3 = nondimensional Young’s moduli of foundation
k1, k3 = Young’s moduli of foundation
P� qa4

E�h
4 = nondimensional uniformly distributed load

q = uniformly distributed normal load
q0 = external pressure due to elastic foundation
R = radius of curvature of the shell
u = radial displacement
W = nondimensional transverse displacement

(deflection)
w = transverse displacement (deflection)
Wm = nondimensional central transverse displacement

(deflection)
W0 = imperfection factor
Wi = nondimensional geometric imperfection
wi = geometric imperfection

�� E�
Er
� ��

�r
= orthotropic parameter

�� a2

Rh
� 2H

h
= characteristic geometric parameter

�, � = rotational and in-plane edge-restraint
coefficients

�� a�
D

= nondimensional force function
� = force function
2a = span of the shell

I. Introduction

T he thin spherical shell, as an important structural component,
has extensive applications in many engineering fields.

Deformation of such structures under an external load causes the
phenomenon of snap-through buckling. Evaluation of such buckling
behavior and critical load becomes an important topic in research. A
lot of work on buckling analysis has been carried out for perfect
shallow spherical shell structures [1–12]. As flexible structures,
shallow spherical shells are sensitive to initial geometric imper-
fections. The effect of imperfection on load carrying capability is
thus important in buckling analysis of such imperfect structures [13–
17]. In addition, the effects of the elastic foundation supporting the
shells on deformation and buckling behaviors of the structures are
also important. The structure–foundation interactions are frequently
considered using linear and nonlinear Winkler and Pasternak
foundations [18–28].

The fundamental governing equations of equilibrium and com-
patibility for shallow shell structures are coupled, and an exact
solution for nonlinear problems does not exist. Accordingly, many
approximate methods have been developed to solve the corres-
ponding problems, such as methods containing a Bessel and
Chebyshev series, Galerkin’s method, Berger’s method, a modified
Berger’s method, Sinharay and Banerjee’s method, a finite
difference method, and a finite element method. Galerkin or various
weighted residual methods are frequently used among these
methods. With different boundary conditions, corresponding trial
functions of spatial distribution for displacements can be presumed,
and approximate expressions for mechanical behavior can be
obtained. Although such treatment has proved to be effective, the
procedure causes errors because the governing equations are not
solved exactly. On the other hand, existing studies focus mostly on
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simple boundary conditions such as movable or immovable simply
supported and clamped edges. However, in practice they are
generally elastically restrained against rotation and nonuniformly
supported along its edge or edges [7,27,28]. Hence, an analytic
solution is of great importance for the understanding of deformation
and buckling behavior of imperfect shallow spherical shells with an
elastically restrained edge resting on an elastic foundation. In seeking
for an analytic formulation of nonlinear static and dynamic behavior
of shallow shell structures, an asymptotic iteration method (AIM) is
proposed and applied to nonlinear buckling and vibration of
imperfect and perfect reticulated (latticed) shallow spherical shells
and solid shallow spherical shells on elastic foundations [27–31].
AIM is similar to the perturbation technique in that the solution is
initially constructed based on the use of a linear solution for
transverse displacement (deflection). However, the two techniques
are different in that during the process of each iteration of the AIM,
the same equation for the central deflection is introduced in the
derivation of both load-central deflection and force function-central
deflection relations, whereas the load remains unchanged for each
iteration. AIM results in more terms than the perturbation, which is
based on series expansion of deflection, force function, and the load
in terms of the central deflection, respectively, if chosen as
perturbation parameters. AIM is therefore a modified successive
iterative method but generally with improved speed of convergence.
For membrane force, it is determined by solving the exact
compatibility equation instead of a linearized equation as commonly
done in perturbation methods. By means of central deflection as a
perturbation parameter in the process of iteration, an analytic
expression between the load and central deflection is finally derived.

There have been relatively few studies on the buckling of
orthotropic perfect and imperfect shallow spherical shells
[6,7,16,19,25,26]. In this paper, an asymptotic solution is developed
for nonlinear behavior of orthotropic, shallow spherical shells with
imperfections resting on an elastic foundation under uniform
external pressure. The shell is elastically restrained against
rotational, transverse, and in-plane displacements. Geometric imper-
fection is assumed to have the same mode as that of transverse
displacement, but no specific form of the mode is presumed. An
analytic and explicit relation in nondimensional form between
pressure and central deflection of the shell is derived based on the
AIM. Numerical examples are given to illustrate the validity of the
resulting solution and effects of geometric and material parameters,
imperfection, moduli of foundation, and edge restraint on defor-
mation and buckling of such structures.

II. Mathematical Formulation

Consider an imperfect shallow spherical shell subjected to
uniform normal pressure q on a convex surface and supported on an

elastic foundation, as shown in Fig. 1. It is assumed that the
foundation is made up of massless springs with shear interaction
among them. The foundation is characterized by extensional and
shear moduli k1, k3, and g respectively.

The relation between internal force and strains (displacements)
can be written as

"r �
1

Eh
��Nr � �N��; "� �

1

Eh
�N� � �Nr� (1)

Mr ��D
�
d2w

dr2
� �
r

dw

dr

�
; M� ��D

�
�

r

dw

dr
� � d

2w

dr2

�
(2)

denoting E� E� and �� ��. Assuming that there is an initial
geometric imperfection wi, the geometric equations are given by

"r �
du

dr
� w
R
� 1

2

�
dw

dr

�
2

� dw

dr

dwi

dr
(3)

"� �
u

r
� w
R

(4)

and the equilibrium equations for in-plane internal forces and
moments are given by

d

dr
�rNr� � N� � 0 (5)

d

dr
�rMr� �M� � rQr � 0 (6)

With the effect of external pressure q0 due to elastic foundation, or
q0 � k1w� k3w3 � gr2w, the equilibrium equation in the normal
direction can be expressed as

d

dr

�
rNr

�
r

R
� d�w� wi�

dr

�
� rQr

�
� r�q � q0� � 0 (7)

Introducing a force function � defined by

Nr �
�

r
and N� �

d�

dr
(8)

Eq. (5) is satisfied automatically. Applying Eqs. (2), (6), and (8),
Eq. (7) can be expressed in terms of w and � such that

D
1

r

d

dr

�
r
d3w

dr3
� d2w

dr2
� �
r

dw

dr

�
� 1

r

d

dr

(
�

�
r

R
� d�w�wi�

dr

�)

� k1w � k3w3 � gr2w� q (9)

Fig. 1 Geometry and internal forces of an imperfect, orthotropic, shallow spherical shell.
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On the other hand, using Eqs. (1) and (8), the compatibility equation
can be obtained by eliminating the radial displacement u in
geometric Eqs. (3) and (4) as

r
d2�

dr2
� d�

dr
� �
r
���Eh dw

dr

�
r

R
� 1

2

d�w�wi�
dr

�
(10)

Consider an elastically restrained boundary against rotational,
transverse, and in-plane displacements [27]

w� 0; Mr � �
dw

dr
; Nr ���u at r� a (11)

where � and � are the rotational and in-plane edge-constraint
coefficients, respectively. At the center of the shell

w <1; dw

dr
� 0; rNr � 0 at r� 0 (12)

Introducing the nondimensional quantities

�� r
a
; W � w

h
; Wi � w

i

h
; �0 �

wi

w
�W

i

W
� W0

Wm

�� a2

Rh
� 2H

h
; Kb �

�a

D
; Ki �

�a

Eh
; K1 �

k1a
4

D

K3 �
k3a

4h2

D
; G� ga

2

D
; P� qa

4

Eh4
; �� a

D
� (13)

where Wm �Wj��0 is nondimensional central transverse displace-
ment (deflection) and W0 �Wij��0 �wijr�0=h is imperfection
factor, and suppose that initial geometric imperfection has the
same mode as that of transverse displacement (deflection), the
von Kármán-type fundamental governing Eqs. (9) and (10) with
boundary conditions (11) and (12) are written as

�2
d3W

d�3
� �d

2W

d�2
� p2

dW

d�
� ��

�
��� �1� �0�

dW

d�

�
g � 1

2
eP�3

�K1�

Z
�

0

W����d��K3�

Z
�

0

W3����d��G�2 dW
d�

(14)

�2
d2�

d�2
� � d�

d�
� p2���e� dW

d�

�
��� 1

2
�1� 2�0�

dW

d�

�
(15)

and

W � 0;
d2W

d�2
� Bb

1

�

dW

d�
� 0;

d�

d�
� Bi

�

�
� 0 at �� 1

(16)

dW

d�
� 0; �� 0 at �� 0 (17)

with

p� �1=2; Bb � Kb � v; Bi ��
1

Ki
� v; e� 12�� � �2�

(18)

III. Asymptotic Iterations

A. First Approximation

Consider the reduced linear boundary-value problem formulated
from the original governing equations in Eqs. (14–17) as

�2
d2V�1�

d�2
� � dV

�1�

d�
� p2V�1� � 1

2
eP�1��3 (19)

�2
d2��1�

d�2
� � d�

�1�

d�
� p2��1� � �e�V�1�

�
��� 1

2
�1� 2�0�V�1�

�
(20)

and

W�1� � 0;
dV�1�

d�
� BbV�1� � 0

d��1�

d�
� Bi��1� � 0 at �� 1 (21)

V�1� � 0; ��1� � 0 at �� 0 (22)

where V�1� � dW�1�

d�
. The superscript (1) represents the first

approximated solution. Using the first two equations in Eq. (21)
and the first equation in Eq. (22) to solve Eq. (19) yields the
expressions forW�1� as

W�1� � 1

a3
�1� a1�1�p � a2�4�P�1� (23)

where

a1 �
4�Bb � 3�

�p � 3��p� Bb � 4� ; a2 ��
�1� p��p� Bb�
�p � 3��p� Bb � 4�

a3 �
8�1� p��3� p��Bb � p�

e�p� Bb � 4� (24)

Denoting the nondimensional central deflection by

W�1��0� �Wm (25)

the linear nondimensional relation between the load and the central
deflection is obtained from Eq. (23) as

P�1� � a3Wm (26)

Accordingly,W�1� can be expressed byWm as

W�1� � �1� a1�1�p � a2�4�Wm (27)

Substituting Eq. (27) into Eq. (20) and using the third equation in
Eq. (21) and the second one in Eq. (22), the solution for��1���� can
be derived as

��1� � f1���Wm � f2���W2
m (28)

where

f1���� b10�p� b11�2�p� b12�1�2p� b13�4�p� b14�5� b15�7

f2���� b20�p� b21�1�2p� b22�4�p� b23�7 (29)

where coefficients bij�i� 1; 2; j� 0; 1; 2; . . . ; 5� are shown in
Appendix A. In view of Eq. (24), the preceding solutions for W�1�,
V�1�, and ��1���� are valid for p ≠ 3. For p� 3, the corresponding
solution is presented in Sec. III.C.

B. Second Approximation

Consider the boundary-value problem

�2
d2V�2�

d�2
� � dV

�2�

d�
� p2V�2� ���1������ �1� �0�V�1��

� K1�

Z
�

0

W�1��d�� K3�

Z
�

0

�W�1��3�d��G�2V�1�

� 1

2
eP�2��3 (30)

and

W�2� � 0;
dV�2�

d�
� BbV�2� � 0 at �� 1 (31)

V�2� � 0 at �� 0 (32)

where P�2�,W�2�, and V�2� � dW�2�

d�
correspond to the second iteration

solutions forP,W, and V, respectively. By means of expressions for
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W�1�, V�1�, and ��1� in Sec. III.A as reference variables, expressions
for W�2� and V�2� may be obtained by solving Eq. (30). Noting that
W�2��0� �Wm, there will be a characteristic relation between the
load and the deflection at the center in a nondimensional form such
that

P�2� � 	1Wm � 	2W2
m � 	3W3

m (33)

where

	1 ��
8

e
�9 � p2�

�
1�

X13
i�0

c1i

�
; 	2 ��

8

e
�9 � p2�

X11
i�0

c2i

	3 ��
8

e
�9 � p2�

X12
i�0

c3i (34)

where coefficients csi�s� 1; 2; 3; i� 0; 1; 2; . . . ; 13� are expressed
in Appendix A.

C. Solution for p� 3

When p� 3, the governing Eqs. (19) and (20) become

�2
d2V�1�

d�2
� � dV

�1�

d�
� 9V�1� � 1

2
eP�1��3 (35)

�2
d2��1�

d�2
� � d�

�1�

d�
� 9��1� � �e�V�1�

�
��� 1

2
�1� 2�0�V�1�

�
(36)

and corresponding boundary conditions remain unchanged, as
expressed in Eqs. (21) and (22). Following the same procedure as in
Sec. III.A, the first iterated solution for Eq. (35) has the form

W�1� �
�
1�

�
a4 �

a5
4

�
�4 � a5�4 ln �

�
Wm (37)

and the relation between the load and central deflection is thus

P�1� � a6Wm (38)

where

a4 ��
1

4Bb � 13
; a5 �

Bb � 3

4Bb � 13
; a6 �

48�Bb � 3�
e�4Bb � 13� (39)

The expression for ��1���� has a form

��1� � g1���Wm � g2���W2
m (40)

where

g1��� � b10�3 � �5�b11 � b12 ln �� � �7�b13 � b14 ln �
� b15ln2��

g2��� � b20�3 � �7�b21 � b22 ln �� b23ln2�� (41)

and the coefficients bij�i� 1; 2; j� 0; 1; 2; . . . ; 5� are shown in
Appendix B.

Further, consider the corresponding equation for V�2� andW�2�

�2
d2V�2�

d�2
� �dV

�2�

d�
� 9V�2� ���1������ �1� �0�V�1��

� K1�

Z
�

0

W�1��d�� K3�

Z
�

0

�W�1��3�d��G�2V�1�

� 1

2
eP�2��3 (42)

under conditions Eqs. (31) and (32), the final result corresponding to
Eq. (33) is

P�2� � �1Wm � �2W
2
m � �3W

3
m (43)

where

�1 �
192

e

�
1� c10 �

c11
4
� c12

6
� c13

6
� c14

36
� c15

8
� c16

64

� c17
10
� c18
100
� c19

500
� c110

12
� c111
144
� c112

864
� c113
3456

�

�2 �
192

e

�
c20 �

c21
6
� c22

8
� c23

64
� c24

10
� c25
100
� c26

500
� c27

12

� c28
144
� c29

864
� c210
3456

�

�3 �
192

e

�
c30 �

c31
4
� c32

16
� c33

8
� c34

64
� c35

12
� c36
144
� c37

864

� c38
3456

� c39
16
� c310
256
� c311

2048
� c312
32768

�
(44)

and the coefficients csi�s� 1; 2; 3; i� 0; 1; 2; . . . ; 13� are shown in
Appendix B.

To obtain the third approximation, the resulting expressions for
W�1�;�2�, V�1�;�2�, and ��1� are used as reference variables, and the
corresponding boundary-value problem can be formulated as

�2
d2V�3�

d�2
� � dV

�3�

d�
� p2V�3� � ��2��2� � �1� �0����1�V�2�

���2�V�1���� K1�

Z
�

0

W�2�����d� � K3�

Z
�

0

W�2�3����d�

�G�2V�2� � 1

2
eP�3��3 (45)

and

W�3� � 0;
dV�3�

d�
� BbV�3� � 0; at �� 1 (46)

W�3��0� �Wm; V�3� � 0; at �� 0 (47)

where ��2� can be determined by solving the following equation:

�2
d2��2�

d�2
� � d�

�2�

d�
� p2��2� � �e�V�2�

�
��� �1� 2�0�V�1�

�
(48)

with

d��2�

d�
� Bi��2� � 0 at �� 1 (49)

��2� � 0 at �� 0 (50)

whereQ�3�,W�3�, andV�3� � dW�3�

d�
stand for the approximations forQ,

W, and V respectively. Further iterative approximations can also be
performed successively based on the preceding procedure depending
on the required accuracy.

IV. Results

To validate the resulting solutions in Sec. III, comparisons of
numerical results are initially made. For different foundation moduli
K1, K3, andG, rotational and in-plane edge-restraint coefficients Kb
andKi, orthotropic parameter �, Poisson’s ratio �� ��, and the ratio
of apex height H to the thickness of the shell h, changes in critical

buckling loads P�2�cr and P�3�cr corresponding to the second and third
approximations, respectively, determined with dP

dWm
� 0 for the resul-

ting characteristic relations, are illustrated in Figs. 2–4, respectively.
Results show that the values of buckling loads for the second and
third approximations are very close, indicating the validity of
the second approximation, which is similar in commonly used
perturbation methods.
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As the solution in Eq. (43) for the case of p� �1=2 � 3 is
formulated independently in Sec III.C, continuity of the solutionwith
Eq. (33) for p ≠ 3 is also checked. Consider two cases of p� 2:999
and p� 3:001 using Eq. (33) and the case of p� 3 using Eq. (43),
the corresponding expressions for the characteristic load-deflection
relation for the case of H=h� 3, Kb � 2:0, Ki � 2:0, and �� 0:3
are given as

P� 18:7934Wm � 8:75052W2
m � 0:981814W3

m for p� 2:999

P� 18:7895Wm � 8:74884W2
m � 0:981648W3

m for p� 3:000

P� 18:7856Wm � 8:74716W2
m � 0:981481W3

m for p� 3:001

It is clear that the values of the preceding three corresponding
coefficients are almost the same, and the resulting solution forp ≠ 3
in Eq. (33) can be used to replace the special solution of p� 3. The
solution can thus be regarded as a unified solution for evaluating the
mechanical behaviors of imperfect shells.

Furthermore, comparisons of the present results corresponding to
the second approximation are made with available data based on the
Garlerkin’s method by Dumir [19] and presented in Figs. 5–7. It
shows that the characteristic relation between external load and

Fig. 2 Distribution of buckling load with foundation modulus (�� 1,

Kb � 2:0, Ki � 2:0, �� 0:3, H=h� 3,W0 � 0, K3 � G� 0).

Fig. 3 Distribution of buckling load with foundation modulus (�� 1,

Kb � 2:0, Ki � 2:0, �� 0:3, H=h� 3,W0 � 0, K1 � 50, G� 0).

Fig. 4 Distribution of buckling load with foundation modulus (�� 1,

Kb � 2:0, Ki � 2:0, �� 0:3, H=h� 3,W0 � 0, K1 � 50, K3 � 0).

Fig. 5 Comparison of load deflection under different orthotropic

parameters (H=h� 3, Kb � Ki !1, W0 � 0, �� 0:3, K1 � K3�
G� 0).

Fig. 6 Comparison of load deflection under different characteristic

geometric parameters (�� 2,Kb � Ki !1,W0 � 0, �� 0:3,K1 � K3�
G� 0).
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central deflection for different orthotropic and geometric parameters
of perfect shallow shells, with imperfection factorW0 � 0, as shown
in Figs. 5 and 6, agrees well with each other, especially for buckling
loads.

For the case of normal pressure on the concave surface of an
immovable, clamped perfect shell with geometrical and material
parameters H

h
� 1:25, �� 1, and �� 0:3, and moduli of foundation

K1 � 20:0, K3 � 0, and G� 10:0, Fig. 8 compares the present
results with known approximations based on Alpha method,
Berger’s method, modified Berger’s method, and Sinharay and
Banerjee’s method as outlined by Paliwal and Bhalla [23]. It can be
seen that solutions obtained by the present method are comparable to
the more accurate modified Berger’s method and Sinharay and
Banerjee’s method.

V. Effects of Parameters on Buckling
of Orthotropic Shells

In the section, different factors on buckling behaviors are
numerically investigated. First, consider the four classical boundary
conditions formed by using special values of rotational and in-plane
edge-restraint coefficients Kb and Ki such that 1) Kb !1,
Ki !1; 2) Kb !1, Ki ! 0; 3) Kb ! 0, Ki !1; and
4) Kb ! 0, Ki ! 0, which correspond to immovable clamped,
movable clamped, immovable simply supported, and movable
simply supported edges, respectively. For a perfect orthotropic,

shallow spherical shell with specific orthotropic parameter �� 2,
ratio of apex height to thickness of the shellH=h� 3, and Poisson’s
ratio �� �� � 0:3, the characteristic load-deflection relation is
presented in Fig. 9. The snap-through buckling loads for immovable
edge restraints are larger than for movable edge restraints. Also, the
buckling load for movable clamped edge is larger than for movable
simply supported edge. On the other hand, the buckling load for an
immovable clamped edge is lower than for an immovable simply
supported edge. These behaviors of the orthotropic, shallow
spherical shell coincide with those in isotropic shells [7,27] and
anisotropic reticulated shells [31].

Figure 10 shows the characteristic load-deflection relation for
various ratios of apex height to thickness of the shell H=h. It can be
seen that the snapping phenomenon occurs when the ratio exceeds a
critical value. For the case of �� 2, Kb � 2:0, Ki � 2:0, and
�� 0:3, the critical value of the ratio is approximatelyH=h� 1:19.
For the case of the circular plate H=h� 0 the load increases
monotonously with deflection. For the same boundary constraint
condition, a change in the buckling load with characteristic
geometric parameter is presented in Fig. 11. It indicates that a larger
orthotropic parameter corresponds to a lower buckling load whereas
a “deeper” shell has a higher buckling load. The effect of
imperfection on the buckling load is shown in Fig. 12, which
indicates that imperfection leads to a decrease in the buckling load.

Fig. 7 Comparison of critical buckling load under different ortho-

tropic parameters and characteristic geometric parameters (Kb � Ki !
1, W0 � 0, �� 0:3, K1 � K3 � G� 0).
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Fig. 8 Comparison of load-deflection relation using different methods

(H=h� 1:25, Kb � Ki !1, W0 � 0, �� 0:3, K1 � 20:0, K3 � 0:0,
G� 10:0).

Fig. 9 Effect of classical boundary constraints on deformation of the

shell (�� 2, H=h� 3,W0 � 0, �� 0:3, K1 � K3 � G� 0).

Fig. 10 Load deflection under different characteristic geometric

parameters (�� 2, Kb � 2:0, Ki � 2:0,�� 0:3, W0 � 0, K1 � K3�
G� 0).
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For the case of the ratio of apex height to thickness of the shell
H=h� 3 and rotational and in-plane edge-restraint coefficients
Kb � Ki � 2:0, the effects of material parameters on buckling loads
are presented in Figs. 13 and 14. As shown in Fig. 13, buckling load
decreases considerably when there is an increase in the value of the
orthotropic parameter � especially for � < 1:0. Figure 14 shows the
relation between the buckling load and Possion’s ratio �, which
indicates that when the orthotropic parameter � < 1:0, there will be a
significant change in buckling load with an increase in Possion’s
ratio. However, when � > 1:0, the effect of Possion’s ratio is very
weak.

Figures 15 and 16 show the effects of rotational and in-plane edge-
constraint coefficients Kb and Ki on buckling loads for different
values of orthotropic parameter, respectively. When Kb or Ki are
small (Kb < 5:0 or Ki < 5:0), buckling load increases with an
increase in the edge-constraint coefficient. In particular, the buckling
load increases significantly for smallKi. However, for higher values
ofKb andKi, a large increase in the two edge-constraint coefficients
leads to a small change in buckling load. Specifically, the buckling
load decreases gradually for increasing Kb, as shown in Fig. 15,
although it increases slightly for increasing Ki, as shown in Fig. 16.
Figure 16 also shows that the change of edge constraint from
movable edgeKi � 0:0 to immovable edge with largeKi results in a
large increase in the buckling load. Such a behavior is also shown
in Fig. 9.

Fig. 11 Change in buckling load with characteristic geometrical
parameters (Kb � 2:0, Ki � 2:0, W0 � 0, �� 0:3, K1 � K3 � G� 0).

Fig. 12 Effect of imperfection on buckling load (H=h� 3, Kb � 2:0,
Ki � 2:0, �� 0:3, K1 � K3 � G� 0).

Fig. 13 Effect of orthotropic parameters on buckling load (H=h� 3,

Kb � 2:0, Ki � 2:0,W0 � 0, �� 0:3, K1 � K3 � G� 0).

Fig. 14 Effect of Poisson’s ratio on buckling load (H=h� 3, Kb � 2:0,
Ki � 2:0,W0 � 0, K1 � K3 � G� 0).

Fig. 15 Effect of rotational edge-constraint coefficient on buckling load

(H=h� 3, Ki � 2:0, W0 � 0, �� 0:3, K1 � K3 � G� 0).
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Effects of Young’s moduli K1 and K3 and shear modulus G of
foundation on buckling loads of orthotropic shells are illustrated in
Figs. 17–19. It can be seen that, in general, support of the elastic
foundation on the shells results in high buckling loads. Figure 17
shows that the buckling load increases rapidly with an increase of the
modulusK1 for a smaller orthotropic parameter. Calculations predict
that themodulus has its largest critical value, beyondwhich snapping
phenomena no longer occurs. For a given geometry of the shell
structure with an edge-constrain condition such as H=h� 3,
Kb � 2:0, and Ki � 2:0, the critical values of the modulus are
161.95, 241.28, and 358.13 for the case of �� 0:3 and �� 0:5, 1.0,
and 3.0, respectively. Similar behaviors appear for the effects of
Young’s modulus K3 and shear modulus G. For the same geometry
of the shell with three different orthotropic parameters �� 0:5, 1.0,
and 3.0 with �� 0:3, the corresponding critical values of modulus
K3 are 24.56, 24.02, and 22.96, respectively, although the critical
values of themodulusG are 54.39, 51.78, and 46.56, respectively, as
can be seen from Figs. 18 and 19. From Fig. 18, it can also be seen
that the two cases of K3 > 0 and K3 < 0 represent a hardening- and
softening-type foundation, respectively. The buckling load tends to
increase with a positive modulus and decreases with a negative
modulus.

VI. Conclusions

This paper presents an asymptotic solution for nonlinear buckling
of elastically restrained imperfect orthotropic, shallow spherical
shells on an elastic foundation. The analytic and explicit charac-
teristic load-deflection relation is formulated in nondimensional
form. The solution incorporates effects of various factors, including
orthotropic and material parameters, geometric imperfection factor,
Young’s and shear moduli of foundation, and edge-restraint co-
efficients. Themethod can be used to evaluate nonlinear deformation
and buckling behaviors of orthotropic imperfect shallow spherical
shells. A parametric analysis is carried out in detail for deformation
and buckling of such structures. Comparisons with available data for
several specific cases show that the resulting solution is accurate in
terms of computation.

Appendix A: Expressions for Coefficients bij
and csi for p ≠ 3

b11 ��
eW0�1� p�a21

1� 3p
; b12 ��

1

4
e�a1

b13 ��
eW0�1� p�a1a2

2� p

Fig. 16 Effect of in-plane edge-restraint coefficient on buckling load

(H=h� 3, Kb � 2:0,W0 � 0, �� 0:3, K1 � K3 � G� 0).

Fig. 17 Distribution of buckling load with the Young’s modulus K1

(H=h� 3, Kb � 2:0, Ki � 2:0,W0 � 0, �� 0:3, K3 � G� 0).

Fig. 18 Distribution of buckling load with the Young’s modulus K3

(H=h� 3, Kb � 2:0, Ki � 2:0,W0 � 0, �� 0:3, K1 � 50, G� 0).

Fig. 19 Distribution of buckling load with shear modulus G (H=h� 3,

Kb � 2:0, Ki � 2:0,W0 � 0, �� 0:3, K1 � 50, K3 � 0).
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